Ethylene Regulates Differential Growth via BIG ARF-GEF-Dependent Post-Golgi Secretory Trafficking in Arabidopsis.
نویسندگان
چکیده
During early seedling development, the shoot apical meristem is protected from damage as the seedling emerges from soil by the formation of apical hook. Hook formation requires differential growth across the epidermis below the meristem in the hypocotyl. The plant hormones ethylene and auxin play key roles during apical hook development by controlling differential growth. We provide genetic and cell biological evidence for the role of ADP-ribosylation factor 1 (ARF1)-GTPase and its effector ARF-guanine-exchange factors (GEFs) of the Brefeldin A-inhibited GEF (BIG) family and GNOM in ethylene- and auxin-mediated control of hook development. We show that ARF-GEF GNOM acts early, whereas BIG ARF-GEFs act at a later stage of apical hook development. We show that the localization of ARF1 and BIG4 at the trans-Golgi network (TGN) depends on ECHIDNA (ECH), a plant homolog of yeast Triacylglycerol lipase (TLG2/SYP4) interacting protein Tgl2-Vesicle Protein 23 (TVP23). BIGs together with ECH and ARF1 mediate the secretion of AUX1 influx carrier to the plasma membrane from the TGN during hook development and defects in BIG or ARF1 result in insensitivity to ethylene. Thus, our data indicate a division of labor within the ARF-GEF family in mediating differential growth with GNOM acting during the formation phase whereas BIGs act during the hook maintenance phase downstream of plant hormone ethylene.
منابع مشابه
An early secretory pathway mediated by GNOM-LIKE 1 and GNOM is essential for basal polarity establishment in Arabidopsis thaliana.
Spatial regulation of the plant hormone indole-3-acetic acid (IAA, or auxin) is essential for plant development. Auxin gradient establishment is mediated by polarly localized auxin transporters, including PIN-FORMED (PIN) proteins. Their localization and abundance at the plasma membrane are tightly regulated by endomembrane machinery, especially the endocytic and recycling pathways mediated by ...
متن کاملDelivery of endocytosed proteins to the cell–division plane requires change of pathway from recycling to secretion
Membrane trafficking is essential to fundamental processes in eukaryotic life, including cell growth and division. In plant cytokinesis, post-Golgi trafficking mediates a massive flow of vesicles that form the partitioning membrane but its regulation remains poorly understood. Here, we identify functionally redundant Arabidopsis ARF guanine-nucleotide exchange factors (ARF-GEFs) BIG1-BIG4 as re...
متن کاملFluorescence Imaging-Based Screen Identifies ARF GEF Component of Early Endosomal Trafficking
Endocytic vesicle trafficking is crucial for regulating activity and localization of plasma membrane components, but the process is still poorly genetically defined in plants. Membrane proteins of the PIN-FORMED (PIN) family exhibit polar localization in plant cells and facilitate cellular efflux of the plant hormone auxin, thereby regulating multiple developmental processes. PIN proteins under...
متن کاملThe Drosophila Sec7 domain guanine nucleotide exchange factor protein Gartenzwerg localizes at the cis-Golgi and is essential for epithelial tube expansion.
Protein trafficking through the secretory pathway plays a key role in epithelial organ development and function. The expansion of tracheal tubes in Drosophila depends on trafficking of coatomer protein complex I (COPI)-coated vesicles between the Golgi complex and the endoplasmic reticulum (ER). However, it is not clear how this pathway is regulated. Here we describe an essential function of th...
متن کاملTargeting of the Arf-GEF GBF1 to lipid droplets and Golgi membranes.
Lipid droplet metabolism and secretory pathway trafficking both require activation of the Arf1 small G protein. The spatiotemporal regulation of Arf1 activation is mediated by guanine nucleotide exchange factors (GEFs) of the GBF and BIG families, but the mechanisms of their localization to multiple sites within cells are poorly understood. Here we show that GBF1 has a lipid-binding domain (HDS...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Plant cell
دوره 29 5 شماره
صفحات -
تاریخ انتشار 2017